搜索

耀世资讯

公司动态
行业新闻

联系我们

Contact us

电话:400-123-4567
Q Q:1234567890
邮箱:admin@youweb.com
地址:广东省广州市天河区88号

智能优化算法:鸟群算法-附代码

发布时间:2024-07-22 07:56:27 作者:佚名
鸟群算法(Particle Swarm Optimization,PSO)是一种基于群体智能优化算法,可以用于优化BP神经网络的参数。下面是使用PSO算法优化BP神经网络的代码示例: ```python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 加载数据集 iris=load_iris() X=iris.data y=iris.target # 数据预处理 scaler=StandardScaler() X=scaler.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, random_state=42) # BP神经网络 class BPNN: def __init__(self, input_size, hidden_size, output_size): self.input_size=input_size self.hidden_size=hidden_size self.output_size=output_size self.W1=np.random.randn(self.input_size, self.hidden_size) self.b1=np.zeros((1, self.hidden_size)) self.W2=np.random.randn(self.hidden_size, self.output_size) self.b2=np.zeros((1, self.output_size)) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def forward(self, X): self.z1=np.dot(X, self.W1) + self.b1 self.a1=self.sigmoid(self.z1) self.z2=np.dot(self.a1, self.W2) + self.b2 self.a2=self.sigmoid(self.z2) return self.a2 def loss(self, X, y): y_pred=self.forward(X) L=0.5 * np.sum((y - y_pred) ** 2) return L def accuracy(self, X, y): y_pred=self.predict(X) acc=np.mean(y_pred==y) return acc def predict(self, X): y_pred=np.argmax(self.forward(X), axis=1) return y_pred # PSO算法 class PSO: def __init__(self, n_particles, input_size, hidden_size, output_size, max_iter): self.n_particles=n_particles self.input_size=input_size self.hidden_size=hidden_size self.output_size=output_size self.max_iter=max_iter self.particles=[] self.gbest_loss=float('inf') self.gbest_W1=None self.gbest_b1=None self.gbest_W2=None self.gbest_b2=None for i in range(self.n_particles): particle={} particle['W1']=np.random.randn(self.input_size, self.hidden_size) particle['b1']=np.zeros((1, self.hidden_size)) particle['W2']=np.random.randn(self.hidden_size, self.output_size) particle['b2']=np.zeros((1, self.output_size)) particle['v_W1']=np.zeros((self.input_size, self.hidden_size)) particle['v_b1']=np.zeros((1, self.hidden_size)) particle['v_W2']=np.zeros((self.hidden_size, self.output_size)) particle['v_b2']=np.zeros((1, self.output_size)) particle['pbest_loss']=float('inf') particle['pbest_W1']=None particle['pbest_b1']=None particle['pbest_W2']=None particle['pbest_b2']=None self.particles.append(particle) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def forward(self, X, W1, b1, W2, b2): z1=np.dot(X, W1) + b1 a1=self.sigmoid(z1) z2=np.dot(a1, W2) + b2 a2=self.sigmoid(z2) return a2 def loss(self, X, y, W1, b1, W2, b2): y_pred=self.forward(X, W1, b1, W2, b2) L=0.5 * np.sum((y - y_pred) ** 2) return L def update(self, X, y): for i in range(self.n_particles): particle=self.particles[i] W1=particle['W1'] b1=particle['b1'] W2=particle['W2'] b2=particle['b2'] v_W1=particle['v_W1'] v_b1=particle['v_b1'] v_W2=particle['v_W2'] v_b2=particle['v_b2'] pbest_loss=particle['pbest_loss'] pbest_W1=particle['pbest_W1'] pbest_b1=particle['pbest_b1'] pbest_W2=particle['pbest_W2'] pbest_b2=particle['pbest_b2'] c1=2 c2=2 r1=np.random.rand() r2=np.random.rand() v_W1=0.5 * v_W1 + c1 * r1 * (pbest_W1 - W1) + c2 * r2 * (self.gbest_W1 - W1) v_b1=0.5 * v_b1 + c1 * r1 * (pbest_b1 - b1) + c2 * r2 * (self.gbest_b1 - b1) v_W2=0.5 * v_W2 + c1 * r1 * (pbest_W2 - W2) + c2 * r2 * (self.gbest_W2 - W2) v_b2=0.5 * v_b2 + c1 * r1 * (pbest_b2 - b2) + c2 * r2 * (self.gbest_b2 - b2) W1=W1 + v_W1 b1=b1 + v_b1 W2=W2 + v_W2 b2=b2 + v_b2 loss=self.loss(X, y, W1, b1, W2, b2) if loss < pbest_loss: particle['pbest_loss']=loss particle['pbest_W1']=W1 particle['pbest_b1']=b1 particle['pbest_W2']=W2 particle['pbest_b2']=b2 if loss < self.gbest_loss: self.gbest_loss=loss self.gbest_W1=W1 self.gbest_b1=b1 self.gbest_W2=W2 self.gbest_b2=b2 particle['W1']=W1 particle['b1']=b1 particle['W2']=W2 particle['b2']=b2 particle['v_W1']=v_W1 particle['v_b1']=v_b1 particle['v_W2']=v_W2 particle['v_b2']=v_b2 def train(self, X, y): for i in range(self.max_iter): self.update(X, y) print('Iteration:', i, 'Loss:', self.gbest_loss) # 训练模型 input_size=X_train.shape[1] hidden_size=10 output_size=len(np.unique(y_train)) n_particles=10 max_iter=100 pso=PSO(n_particles, input_size, hidden_size, output_size, max_iter) pso.train(X_train, y_train) # 测试模型 y_pred=np.argmax(pso.forward(X_test, pso.gbest_W1, pso.gbest_b1, pso.gbest_W2, pso.gbest_b2), axis=1) acc=np.mean(y_pred==y_test) print('Accuracy:', acc) ```
热线电话:400-123-4567
电子邮箱:admin@youweb.com
Q Q:1234567890
地址:广东省广州市天河区88号
备案号:
耀世娱乐-耀世平台-耀世加盟站

关注我们

Copyright © 2002-2017 耀世-耀世平台-耀世加盟站 版权所有

平台注册入口